Building Real-Time Visualizations at Scale

Mike Barry @msb5014 Kevin Robinson @krob

Hello!

Hello!

analytics.twitter.com

Your Tweets earned 11.8K impressions over this 31 day period

Hello!

answers

No analysis required. inally, mobile app analytics you don't need to analyz

Answers

Building Real-time Visualizations

Real-time Actionable User-focused

Analytics at Twitter

Architecture Higher-level abstractions Human flexibility

Typical Analytics Pipeline

Do more work on write so that reads are fast

How many impressions from X to Y?

Your Tweets earned 11.8K impressions over this 31 day period

How many impressions from X to Y?

How many impressions from X to Y?

Abstractions

Scaling up

Communicate Fearlessly to Build Trust

Human Flexibility

Globally-available data

- + Flexible individuals
- + Hack weeks
- = innovation

Analytics at Twitter

Architecture Higher-level abstractions Human flexibility

answers

No analysis required. nally, mobile app analytics you don't need to analy.

Initial assumptions Shortest path to usefulness Real users and data change everything

Initial assumptions

Shortest path to usefulness Real users and data change everything

No data!

Existing data sources? nope Predictable usage or distributions? nope hmm...

MUST FLOW

Assumptions about data

 \mathbf{O}

Assumptions about data

How can we make them explicit?

How can we make them explicit?

f_x										
	А	В	С	D	E	F	G	н	I	
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
21										
22										
23										
	+ = She	et1 -								

Excel prototype

fx										
	А	В	С	D	E	F				
1										
2		DAU	% DAU did event	Unique users	Count per user	Count				
3	Value	10978	35.36%	3882	1.8	7050				
4	w/w change	5.06%	6.15%	11.52%	-6.28%	4.52%				
5	_									
6	_	Event count								
7	_									
8	8000									
9	D)									
10	6000			▖▖▋▋₿₿₿₿						
11	axis									
12	0004 E	D								
13	vert									
14	t a 2000	D								
15										
17	-									
18	2	/1/2015 2/8	2/15/20	15 2/22/2015	3/1/2015					
10	Horizontal axis title									
13										

Excel prototype

fx									
	А	В	С	D	E	F			
1									
2		DAU	% DAU did event	Unique users	Count per user	Count			
3	Value	10652	28.37%	3022	2.2	6726			
4	w/w change	-2.08%	-6.86%	-8.78%	-0.10%	-8.87%			
5	Event count								
6									
7									
8	10000								
9	0								
10	第 750	0							
11	axis								
12	<u>in</u> 5000	0							
13	/erti								
14	ja 2500	0							
15									
16	-								
17	2	/1/2015 2/8/	2015 2/15/20	2/22/2015	3/1/2015				
18	Horizontal axis title								
19									

Excel prototype

fx									
	А	В	С	D	E	F			
1									
2		DAU	% DAU did event	Unique users	Count per user	Count			
3	Value	10233	30.45%	3116	2.5	7930			
4	w/w change	8.22%	-2.00%	6.06%	5.06%	11.44%			
5									
6	Event count								
7									
8	10000								
9 10	9				_				
11									
12	l ax								
13	5000								
14	ft ve								
15	Ten 2500)							
16									
17)	2015 2/15/20	15 2/22/2015	3/1/2015				
18									
19									

Initial assumptions about data Shortest path to usefulness Real users and data change everything

Initial assumptions about data Shortest path to usefulness Real users and data change everything

Let's build!
Let's build!

Let's build!

Real-time computation

Real-time computation

 $\overline{\bullet}$

Let's build: Prototype feature

Share

 \mathbf{O}

Share

Production feature

Share

 $\overline{\mathbf{O}}$

More fault-tolerance

More fault-tolerance

Local Cascading jobs Subsets or samples of real data In-memory tests

More fault-tolerance

Local Cascading jobs Subsets or samples of real data In-memory tests

More data only a command line away

Ready for real users!

answers events

Initial assumptions about data Shortest path to usefulness Real users and data change everything

Initial assumptions about data Shortest path to usefulness Real users and data change everything

High-touch feedback

Exploring the data

 $\overline{\bullet}$

CanvasTimeline = React.createClass
 displayName: 'CanvasTimeline'

render: ->

```
dom.canvas {
   ref: 'canvas'
   width: @props.width
   height: @props.height
   onMouseMove: @whenMouseMoveInCanvas
   onClick: @whenCanvasClicked
```

```
componentDidMount: ->
@ctx = @refs.canvas.getDOMNode().getContext '2d'
@redrawCanvas()
```

```
redrawCanvas: ->
```

```
{x, y, binHeight, minBarWidth, nowMs} = @props.chartParams
```

```
@ctx.clearRect 0, 0, @props.width, @props.height
@props.filteredData.forEach (d) =>
  @ctx.fillStyle = @props.blockColor d
  @ctx.fillRect [
   (x(d.startTime) + @props.xOffset)
   v(d) * @props.vScale
   Math.max(minBarWidth, x(d.endTime)
                                                                   cale
                                         sublime samples
   binHeight * @props.vScale
  1...
nowX = (x(nowMs) + @props.xOffset) * @pr
@ctx.strokeStyle = '#ccc'
@ctx.beginPath()
@ctx.moveTo(nowX, y.range()[0])
@ctx.lineTo(nowX, v.range()[1])
@ctx.stroke()
```


CanvasTimeline = React.createClass
 displayName: 'CanvasTimeline'

render: ->

```
dom.canvas {
   ref: 'canvas'
   width: @props.width
   height: @props.height
   onMouseMove: @whenMouseMoveInCanvas
   onClick: @whenCanvasClicked
```

```
componentDidMount: ->
```

```
@ctx = @refs.canvas.getDOMNode().getContext '2d'
@redrawCanvas()
```

```
redrawCanvas: ->
```

```
{x, y, binHeight, minBarWidth, nowMs} = @props.chartParams
```

```
@ctx.clearRect 0, 0, @props.width, @props.height
@props.filteredData.forEach (d) =>
  @ctx.fillStyle = @props.blockColor d
  @ctx.fillRect [
    (x(d.startTime) + @props.x0ffset)
   v(d) * @props.vScale
   Math.max(minBarWidth, x(d.endTime)
                                                                    cale
                                         sublime samples
   binHeight * @props.yScale
  1....
nowX = (x(nowMs) + @props.x0ffset) * @pr
@ctx.strokeStyle = '#ccc'
@ctx.beginPath()
@ctx.moveTo(nowX, y.range()[0])
@ctx.lineTo(nowX, v.range()[1])
@ctx.stroke()
```


CanvasTimeline = React.createClass
 displayName: 'CanvasTimeline'

render: ->

```
dom.canvas {
   ref: 'canvas'
   width: @props.width
   height: @props.height
   onMouseMove: @whenMouseMoveInCanvas
   onClick: @whenCanvasClicked
```

```
componentDidMount: ->
```

```
@ctx = @refs.canvas.getDOMNode().getContext '2d'
@redrawCanvas()
```

redrawCanvas: ->

```
{x, y, binHeight, minBarWidth, nowMs} = @props.chartParams
```

```
@ctx.clearRect 0, 0, @props.width, @props.height
@props.filteredData.forEach (d) =>
  @ctx.fillStyle = @props.blockColor d
  @ctx.fillRect [
    (x(d.startTime) + @props.xOffset)
   v(d) * @props.vScale
   Math.max(minBarWidth, x(d.endTime)
                                                                    cale
                                         sublime samples
   binHeight * @props.yScale
  1....
nowX = (x(nowMs) + @props.x0ffset) * @pr
@ctx.strokeStyle = '#ccc'
@ctx.beginPath()
@ctx.moveTo(nowX, y.range()[0])
@ctx.lineTo(nowX, v.range()[1])
@ctx.stroke()
```

CanvasTimeline = React.createClass
 displayName: 'CanvasTimeline'

render: ->

```
dom.canvas {
   ref: 'canvas'
   width: @props.width
   height: @props.height
   onMouseMove: @whenMouseMoveInCanvas
   onClick: @whenCanvasClicked
```

```
componentDidMount: ->
  @ctx = @refs.canvas.getDOMNode().getContext '2d'
```

@redrawCanvas()

```
redrawCanvas: ->
```

```
{x, y, binHeight, minBarWidth, nowMs} = @props.chartParams
```

```
@ctx.clearRect 0, 0, @props.width, @props.height
@props.filteredData.forEach (d) =>
  @ctx.fillStyle = @props.blockColor d
  @ctx.fillRect [
    (x(d.startTime) + @props.x0ffset)
   v(d) * @props.vScale
   Math.max(minBarWidth, x(d.endTime)
                                                                    cale
                                         sublime samples
   binHeight * @props.vScale
  1 . . .
nowX = (x(nowMs) + @props.xOffset) * @pr
@ctx.strokeStyle = '#ccc'
@ctx.beginPath()
@ctx.moveTo(nowX, y.range()[0])
@ctx.lineTo(nowX, v.range()[1])
@ctx.stroke()
```


CanvasTimeline = React.createClass
 displayName: 'CanvasTimeline'

render: ->

```
dom.canvas {
   ref: 'canvas'
   width: @props.width
   height: @props.height
   onMouseMove: @whenMouseMoveInCanvas
   onClick: @whenCanvasClicked
```

```
componentDidMount: ->
  @ctx = @refs.canvas.getDOMNode().getContext '2d'
  @redrawCanvas()
```

```
redrawCanvas: ->
```

```
{x, y, binHeight, minBarWidth, nowMs} = @props.chartParams
```

```
@ctx.clearRect 0, 0, @props.width, @props.height
@props.filteredData.forEach (d) =>
  @ctx.fillStyle = @props.blockColor d
  @ctx.fillRect [
    (x(d.startTime) + @props.xOffset)
   v(d) * @props.vScale
   Math.max(minBarWidth, x(d.endTime)
                                                                    cale
                                         sublime samples
   binHeight * @props.vScale
  1 . . .
nowX = (x(nowMs) + @props.xOffset) * @pr
@ctx.strokeStyle = '#ccc'
@ctx.beginPath()
@ctx.moveTo(nowX, y.range()[0])
@ctx.lineTo(nowX, v.range()[1])
@ctx.stroke()
```


What's the TL;DR?

Answers Events

Opinionated

Opinionated

		7
	CONTENT	0
Purchase	© 0	د جد ۲
Add to Cart	Q s	, 1 0
😇 Start Checkout	🖨 si	
	🖨 R	

Answers Events

Getting started with Answers Events

Implementing a Purchase event allows you to see your revenue in real-time, understand how many users are making purchases .ent: popular, and track plenty of other important purchase-related metric

Use the following t

AWithPrice:[NSDecimalNumbe. (Answers log currency:@"USD" rwithString:@"13.50"] success:@YES itemName:@"Answers Shirt" itemType:@"Apparel" itemId:@"sku-350" ttributes:@{}];

Recommended attribu

We recommend including purchase-related activity. These are

itemPrice Amount in currency Jetter understanding of your users' a included in the example above.

itemName Human-readable name for the item

TL;DR

•

TL;DR

TL;DR

answers events

Initial assumptions about data Shortest path to usefulness Real users and data change everything

https://blog.twitter.com/2015/handling-five-billion-sessions-a-day-in-real-time

Lambda architecture Opening everything enables re-use Higher-level abstractions

Full-stack iteration

Thanks!

